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F0R~W0RD

This report is concerned with the problem of real—time filtering

of gravity-gradiometer readings on board a uniformly horizontally moving

vehicle to produce estimates of the gravity deflection and gravity anomaly

at the vehicle’s position.

The report is divided into two chapters. In the first chapter the

gravity variations are modeled as arising from random variations in mass

density along a line immediately below the vehicle at some depth. Using

first a discrete version of this model in which the state consists of

the density at a moving sequence of position extending from far behind to

far in front of the vehicle, the covariance of the steady-state optimal

filter is obtained by the Chandrasekhar algorithm. To confirm these re-

sults , a continuous model is introduced and the optimal filter is obtain-

able from Wiener filter theory. The solutions of the corresponding

Wiener-Kopf equations for the filter transfer functions take relatively

simple forms when the measurement consists of the spatial derivative, in

the direction of motion, of the quantity to the estimated, and when the

measurement accuracy is sufficiently high. The corresponding transfer

functions in this “asymptotic” limit are of first or second order depend-

ing on whether the gravity anomaly or gravity deflection is being estim-

ated.

In the second chapter, a more realistic continuous model, due to

Heller, is used to describe the gravity variations. Asymptotic Wiener

filter results for high measurement accuracy are found to take the same

form as in the first chapter. These results are extended to cases in

which more than one measurement is incorporated into an estimate. The

results concerning gravity deflection estimation are unambiguous: cross-

track deflection needs only first-order transfer-functions, but in-line

deflection needs second-order transfer functions. The inclusion of the

gravity-gradient component F’ (x being the direction of motion) in thexx
estimation of the gravity anomaly 

~~ 
does not lead to simple asymptotic

forms for the filter transfer functions. The results obtained in Ch. I

with the discrete model suggest, moreover, a substantial increase in

—iii—
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accuracy when r is included along with J” , in the estimation of
‘xx xz

Chapter II concludes with the outline of a method, based on

rational approximation to the transcendental spectral density components,

for constructing a steady—state filter without the asymptotic approxima-
- - tion used earlier.
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CHAPTER I

A. INTRODUCTION

The disturbance mass model which causes the deflection of the

vertical and gravity anomaly is assumed to be a one-dimensional hori-

zontal line mass distribution below the vehicle’s path. The stochastic

property of the line mass density is considered to be a white noise.

The intensity of the whi te  noise and the depth of the line mass are

chosen to produce the same root mean square values and correlation dis-

tance -for the gravity deflection as the measured values on the earth

surface.

The optimal filter for the gradiometer measurement is sought by

two methods. First, we convert the model into a discrete model ; then

find the steady-state optimal filter by the Chandrasekhar algorithm.

The other method consists of finding the stationary filter by solving a

Wiener-Hopf equation.

The results obtained by both methods are in good agreement with

each other. Of noteworthy interest is that the double measurement,

F together with ~(f - F ) yields information on g comparable
zx xx zz x

with that from F alone, and on g much better than that from Fxx xz

B. DISCRETE MODEL

B-I System Equations

In a coordinate frame fixed to the vehicle which moves with

velocity ; with respect to the earth, the mass distribution of the

earth seems to be t ime-varying and the rate of change of the mass density

is described by the following partial differential equation:

= 0 , (i-i)

—I—
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where p denotes the mass density of the earth, and V is the gradient

operator.

For simplicity, we assume that the disturbance mass is concentrated

on a straight line with finite length below the vehicle path, see Fig.

1-1, when the vehicle travels with constant speed v toward negative

x direction, (1.1) reduces to

~p(t,x) - ~ ~~~(~~‘~~)  
= 0 . (1.2)

- At the boundary x = .4, the density p (t, - L) may be considered

-~ as a random process which is assumed to be a white noise with zero mean

because we are interested in only deviation from the mean:

E {P(t~4)P(t’~ 
_ t )} = ~ ô( t-t’ ) (1.3)

‘where E denotes expectation operator, and q is the power spectral

density of the white noise. Though (1.2) does not have any process noise,

the boundary condition (1.3) always brings uncertainty into the system.

On the vehicle, the gravity and gravity gradient due to the din-

turbance mass are expressed in terms of integrals of the mass density

multiplied by weighting functions:

2 -

z
k(t) = 

f 
w
kp (t,x)dx, k = 1,2,..., 5 (i.4)

- - where -

[7k] = ~~~~ g, ~~~ 
r , r ] T

— IL. D - r2 + ~~2 
~~~ + ~~

2 -3Dx 1[wk)_ I 3 ’ 3’ 5 ‘ 5 ‘ 5L r r r r r

4 12  2r = vx +D
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(a) Coordinate Frame
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(b) Discrete Mass Model

FIG. 1 COORDINAT E FRAME AND DISCRETE MASS MODEL
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B-2 Discrete Formulation

The formal application of Kalman filter theory leads to a partial

differential equation for the states error covariance . To

avoid this difficulty, here, the system equations (1.2), (1.3) and (1.4)

are discretized such that a distributed parameter system becomes a

lumped parameter system and the conventional Kalman filter theory can

be applied .

The time and space increments, t~~t and Ax, respectively, are

chosen as vAt = Ax so that nondissipative property of the original

equation (1.2) can be preserved). In this case, (1-2) may be written as

M . 1 (t 11) = M~(t1), 
j  = 1, .. ., N —l (1.5)

where M .(t
i) denotes the mass of the j-th segment at time t~~. The

boundary condition (1.3) may be replaced by

Et M i ( t i )M i ( t )
~ 

= qvAt 5
ie (1.6)

where ~ is the Kronecker delta.ie

The expressions for gravity and gravity gradient (1.4) may

easily be converted into a discrete form as follows: j

Zk(t i
) = 

~~l 
W
k i M .(t1) (i.i)

where

~W 1 — 

D -r~ + 3x~ -r~ + 3D
2 _3

~ j 1T
I. kj~ 

— 
3 ‘ 3 ‘ 5 ‘ 5 ‘ 5 J

and 

r . 

2 

r • rj r . r~

= 
1
(x

1
+D .
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B-3 Chandrasekhar Algorithm

In order to make a good approximation, we have to take the length

of the line mass, 22 , as large as possible, and the space increment Ax ,

as small as possible. When the parameters of the system are not time-

varying but constant, the Chandrasekhar-type algori thm developed by

Kailath et al. [Ref . 1] has the possibili ty of subs tan t i a l ly  reducing

the amount of computation and compt~ -r capac i ty  required below those

necessary with the Riccati  equation . A brief explanation of the

Chandrasekhar algorithm is given in Appendix 1.

our case, the state vector is the mass of each segmen t

j  = 1, ..., N, and mat r ix  F in App . I is given by

F = 

—

~~~ 

~~~~~~~~~ . (

e
e
l
. 
0

The process noise distribution matrix 0 is given by

G = Cl , o, ... , 03
T 

(i.e)

The measurement matrix H is obtained from (1.7). For example, when

“xz 
is used as a measurement, H is given by

-3Dx .
H ~~

‘ 

r
5 ‘ 

= 1, ... , N . (1.10)

3

The power spectral density Q of the process noise is given by

Q = qvAt = qAx . (1.11)
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The power spectral density of the measurement noise R is given by

R = for one measurement (l . l2a)

or
rr• I_ s  0

H r for a double measurement (l-l2b)

L0~~~~~

where r is the power spectral density of the continuous measurement

noise.

Since the dimension of process noise is only one and that  of

measurement is one or two, the number of computations for  one step is

on the order of N2 x 2 or N
2 x 3. Hence, as the number of the segment

N becomes large, the superiority of the Chandrasekhar algorithm over

the Riccati equation becomes clearer. The latter needs an order of N3

computations for one step .

B-4 Power Spectral Density and Auto-correlation Function

Before we proceed to numerical computation discussed in the pre-

vious section, we mention the gravity field produced by an inf in i te  line

• mass with whi te  noise spectrum. Ext ending the integral limits in (1.4)

to in f in i ty,  (1.4) may be regarded as convolution integrals of mass

density p and weighting functions. Since the Fourier t ransform of

the weighting functions are given by modified Bessel functions of the

second kind, the power spectral density of the gravity and gravity gr-~d-

• ient are easily obtained. For the deflection of the vertical along the

track, g , and the gravity anomaly g, we find that

~~~~~~ 
= 4~

2
qw

2
K~ ( Dw) 

(l.13a)

= 4y
2
q)K~(Dw) (l.13b)

where K
0 

and K
1 

are zero and first-ord~ modified Bessel functions,

—6—
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respectively. The rms values of g and g are given by

~~~~ = ~ ~~tq ’2D~ (l , l4a)

= ~~ ~~3~tq/2D~ . (l.l4b)

Auto-correlation functions of g and g are obtainable not analytically

but numerically, and shown in rig. 1-2.

Two parameters to be determined, namely, white noise intensity and

depth D, are chosen such that  the resulting rms value and correlation

distance of g are the sea-level values g0 x 8 arcsec, and 20 n . ml.,

respectively [Ref . 2], where g0 = 9.8 ni/ s
2 

and the correlation distance
- • is defined as the shift distance at which the ACF drops to l/e of that

for zero shift. The result is:

( 7
2q = 1.65 x io

_8 
1m

5
/ sec4

-
~ D = 3 6 k m

B—S Numerical Results

We have investigated the estimation error covariance of the de—

flection of the vertical and the gravity anomaly, when we used different

components of the gravity gradient tensor as the measurements . The

results are shown in Figs . 3 and 4. The conclusions drawn are as follows .

1. As expected , among “single” measurements , T~~ is preferable

to r for estimating its integral g while r is preferable tozx x zX
for estimating its integral g.

2 . The double measurement 1’ together with  ~ (P — r ) yieldszx - X X  ZZ
information on g comparable with that from r alone and on g muchx xx
better than that from r alone. These measurements consist of the out—xz
puts of a single rotating gradiometer with  its spin axis aligned to the

g—axis.
—7—
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At this time , we do not understand fully the reason for Conclu—

sion 2. A possible explanation is as follows.

For a one—dime ns ional gravi ty  source , we ha ve an ident i ty,  namely,

r = — g/D. Since r + F + 1’ is always zero we find thatyy xx yy zz
p = —p + g/D. Therefore, 1’ has not a weak but strong cor-zz xx zz
relation with both g and g. Since ~(P — P ) = F — g/2Dx - xx zz xx ‘

we can say that , qua l i ta t ive ly,  the double measurement provides a

better estimate of g than that from alone . On the contrary,

it cannot provide better estimate of g than that from Fx xx
alone. However, since we have a good est imate of g, at least for

relatively low measurement noise, the measurement ~(r’ — r )xx zz
gives a satisfactory estimate of F and hence of g . Forxx x
example, for 1 E~tvos measurement noise m s  va lue with 10 sec

average , the estimation error covariance of g/D is obtained to

be on the order of 0.001 E. Assuming that the correlation time

is on the order of 20 mins , we can say that the maximum power

spectral density level is of the order ~o
21 

(sec
3
)-~ hence,

much smaller than that of the measurement error which is of the
— 17 —3

order 10 (sec ).

The computer program is shown in Appendix 2. The computer language

used is not FORTRAN but APL (A Programming Language).
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B-6 Wiener Filter Theory

If the filtered estimate ‘ of some stationary process y,

based on a noisy vector measurement ~~~~~~ a, where n is rn-dimensional

white noise, is given by:

lXni

y(s) = ~,T~~~[ ( )  + n(s)] (1.15)

where the transfer function vector *(s) has only left half plane (LIII’)

poles, the mean-squared value of the estimation error, y = - y, is:

= i~ 1
~ T~~~~~~~

rn
~~~ + ~~)*(s) - 

T( ) ~~~~~~

(1.16)

- ~~(-~)~(~) ÷ cp (s)~ds

where q~,~,
(jW) is the spectral density of y, the Fourier transform

of its ACF (autocorrelation function),.- i.e.,

= J C (x) cos wxdx ,
-j~

(0 (x) being the ACF of y(x)), and 
~~~ 

are the transforms of the

AC)’ of the vector z and of its cross-correlation with y.

The optimum jr(s) is determined by the requirements:

1) in (1.15) must be finite;

(1.17)
2) (~~~ (s) + 4~ )*(s) 

— 
~~~(s) has no LIII’ poles.

The minimum mean — squared estimation error is then

4 = ~ (p( s) - 
~zy

8 ds (1.18)

—12—
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where c is any contour large enough

to include all the LHP poles of the 
c s-plane

integrand in (1.17). 
_________  _____

8-7 Asymptotic Results for  Flight Measurement Accuracy

We will apply the method of the previous section, B-6, to the

estimation of g(= -g) from the single measurement I’ , the spatial

derivative of g in the direction of motion. The continuous analogue

of the second component of equation (1 .7) is:

c = P (1.19)

where P is linear density, a random process, and denotes convo-
3lution. Now the Fourier transform of ~‘D/r is

~~ YD cos wx 27

3 2 2 ~dx = ~ — ~zK~,(~l) , (1.20)
-~ (x ÷ D )

where ~I = uD, and K
1 

is a modified Bessel function . Hence,

Pg g (JW) = 4~ c~
2K~(c~)cP~ (1.21)

and and cp1.. 
~ 

are obtained from (1.21) by multiplication by
xz ,qz xz xz

by -jw and w
2 is the earl ier  q

To proceed further, we need a rational approximation to ~
Kl(~

).

A suitable approximation here is

flK ~~~ 
22 .l73 

2 2 (1.22)
1 (2 .252 +~~~~

) -

The related function c~
2
K1
(~) and its approximant are shown in Fig. 1—5.

is proportional to the t ransform:

-13-
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Introducing S = SD, condition 2 of Eq. (1.17) becomes

I4B2 y2p~,_s2 ) 1 4B27
2s

L D 4
~

2 - ~2)
4 + (P

nJ 
ip(s) + 

D3(a 2-S2 ) 4 (1.23)

has no LIII’ poles; where B = 22.173, a = 2.252.

The optimal transfer function ~p( s) is thus given by

4
s (S + a)

I — ~~ ~p(s) = (1.24)

fl ( s + s .)
j=i

where -s ( j  = I, ..., 4) are the four LHP roots of the equation

D
4
p(a

2 
— s2 ) 4 

= 4B2r~ S
2 

. (1.25)

Now, for small p~, Eq. (1.25) has a small LHP root:

4 2  1 p.
~ 

a D  
(1.26)

21B

as well as three large LHP roots given by

24B q p
- p

.
~ 

— 4 —

D c p

A low-frequency approximation to (1.24) is thus :

15

- — ~~~~~ -- -5~~~~ -~~~~~ - -5



- - — - 

1 — s 4 r (s )  = 1 — ip(s)  = = 
l/L

D
2
..J:~/u p 

(s + 
~ +

(1.27)

where L = 
2)8

a
4
D ..Jcp / cp~

The result (1.27) could have been obtained more directly by replac-
ing ~)K1

(c~) by B/a
4 

(~~ 0.87 instead of unity, which is really the correct

limit as ~ -, 0) and requiring that

4B
2
~~ s[1 — s*(s)) + ~~~~~~~~~~ have no U~ poles

a D (1 .28)

1 — s 4 r ( s ) _
~~O as ~~~~~

The mean—squared estimation error is

C 4B272q, 4B27
2
cp

0
: 

= 21tj 8 2 
p 

[1 — s*~(s)]ds = 8 2 (1 .29)
a a D  a D L

If, for example , measurement accuracy is 1 E every 10 sec at speed 50 m/s,

= 0.5X10~~
8 
km/see

4
, and , using D = 36 kin, L = 8700 kin, and r~~/~~ = 1.1~10

2
.

The straight line in Fig. 1—4 shows the asymptotic behavior of this ratio

according to (1.29). Note that L is “integration length” for the first—

order integrator” ~~s) = l/(s+ l/L). The numerical value 8700 km is

certainly excessive for some applications.

We turn next to the estimation of g from the single measurement

~~ Since

0
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and )~c/r 3 has Fourier transfotm

Low frequency approximation to p is

- 
4-y2 /—4B~~\

2 
(1.30)

— 

d2 \ a~ ~

2and p1., and p .. are obtained by multiplication by —jc. and w
xx

The optimum filter transfer—function is thus obtainable from the

requirements

2 2
— 64B7p~ 

~

a’2 
S [1 — si~(s)]  + p ip (s) has no LHP poles ;

(1.31)

s[l — sip ( s )]  -, 0 as S _
~

Hence
2s + —
I. -

- 
4r (s)  = 2 (1.32)

~ 
648Zp2p

where (l/4)L = 12 
p 

The mean—squared estimation error is
a p

2 1 64B272s2p~
= — 

~ l2 [1 —

• C 
(1.33)

= = ~~~~~ ~~~ ~~~~

I
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If , again , measurement accuracy is 1 E~ tvos every 10 sec (at speed

50 rn/see), we find:

L = 720 km

and

g —2
= 0.2 6 x 10

a

The straight line in Fig. 1-3 shows the asymptotic behavior of this ratio,
according to (1.33).
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Chapter 11

TWO-DIMENSIOt4AL GRAVITY SOURCE TREATMEN T

A . THE HELLER MODEL

This model assumes several independent layers be low the earth sur-

face, of “white—noise” potential variations u~.(i = 1 , ...  5). The

external gravity potential fluctuation U at radius r from the

earth’s center is expressible by Poisson’s integral formula

2 2 U

U(r ,8 ,p) = 
~~ 

R~(r — R~) 

J 
2 2 

w~ 
3 2 d~1’ , ( 1)

i (r + R . — 2rR cos~ i~) ”

where R . is the radi us of the i—Ui layer , ~i denotes the angle be-
tween directions (9 , p) and (8’, p’), and d~ ’ = sin 8’ d8’ dp’.

For the description of fluctuations with wavelengths substantially

less than earth radius a ‘flat earth’ approximation to (1) is sufficient:

(z ÷ D1)U (x ’,y’)

U(x,y,z) = 

~~ 2 2 2 
dx’dy’, (2)

[(x—x ’) ÷ (y—y’) +(z+D1) 
]2

where z is altitude above earth surface , and D
1 in the depth of the

i—Ui layer .

Note that formula (2) correspond s not to two—dimensional white—noise
mass dens ity variations at depths Di but rather to layers of random
mass densit y “doublets ” :

. . .± + + + ± +. . .

—19—
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Heller proposes five separate layers but only the three shallowest

layers contribute appreciably to the short wavelength fluctuations .

Table 1 gives the depths D . and the spectral densities p.

for the potential variations U
w
i

Table 1

i D. (km) ~~(km
6
/sec

4
)

1 16.3 7.13 x 10 8

- 2 92.5 1.07 X lO~~

3 390 .5 1 .16 X io
2

The two—dimensional Fourier transform of relation (2) take-s a

simple form

~ t u[w ,w ;  zi = E e

5

~~~ u ( ~~, 
~~~~~~ 

(3)

where

i i
z z+ D .

{ : =

and U
w E~

I x~ 
W
y] 

denotes the transform of U~ (x, y):

= 

~ 
e
_i

xx+
~~~~Uw (x,y) dxdy .
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The two-dimensional transforms of gravity fluctuations g ,  g ,  g

are obta ined by mult ipl ying (3) by jw , iW
y~ 

and —W respectively.

The mean—squared fluctuations in g ,  g ,  g are thus obtainable:

(a , a , a )  = —
~~~ j j  (w~, (A)~~, W

2
) ~ e

_2Z
~~ dW dw

This lead s easily (subst i tu t ing W = (A) COS ~~~, CA) = (A) sin 
~~

) to

= a
2 ! a2 = E !! (

°° 
e

2Z
~~~w3dw = E (4)

g g 2 g~2~ 
~ 

~~ 2,t i (2z~)
4

The two-dimensional Fourier transform of ~
‘ , 1.’ , etc ., areyz zz

obtained from (3) by mul t ip l ica t ion  by — J W W , W2 , etc . The two—

dimensional spectral—density matrix relating 
‘ 
g ,  g ,  ryz~ ~~

is thus
/2 - - 2

(A) 3W ).) — W t.J W — J W W
X x y  x x y  x

2 2 • 2
W W  (A) j W W  —~~~ W — J W W
x y  y y y - y

_2z
i
W 2 . 2 3

E p
1
e _jW

~
W ~~j W W  C.) -3 W ) .) -W (5)

2 2 2 2  . 3
— W W W  —~~~~~ J W CA) W W  3W ).)

x y y y y y

2 - 3 4
2 j u) W 3 -3 W ) .) U)

j W W  y -W

We need , of course, the one-dimensional spectral—density matrix

along the line y = 0. This is obtained by the operation

—21—
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f ( ) d W

We thus obtain, for each layer i, and for states g /2z g /2z g /2zx i’ y i’ z I
r , r :  

.

yz zz

~23K1(~2) o -jcl 3K~ (c~) 0 -icl4iq’(c1)

0 ~
3[K~

t
~~

)_K
1(~~

] 0 c~
4 [Iq’’(~ )— K 1( cl) ) 0

cpi
i~(2z1)

5 j fl3K~ (~ Z) o c~
3K”(c~) 0

0 ~
4

(K1’’~~~~—K 1~~ fl 0 ~2
5 [K~’’’( cl)— 1q’ (~ ) ]  0

0 ~
4K~ ’’(~~) 0

where -~lcosh u
K1(

l2) = e cosh u du
0

a modified Besse’ function .

The gravity—gradient components ~~~ rxy~ 
r
~xz

, which are the

spatial derivatives g ,  g ,  g is the direction of motion , are

easily inc luded by mult ipl icat ion by -i- jw,~. The component r is

obt ainable from rxx and by Laplace ’s equation .

The zero correlation between g ,  and the remaining states

implies, of course, that the optimal estimate of g can involve

—22—
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only the measurements i’ , 1’ , wh i le the opt imal est imates of g andxy yz x
g can involve only the measurements r , r , r (or P ).

z xx xz zz yy -

B. ASYMPTOTIC RESULTS FOR VERY ACC URATE MEASUREMENTS

In accordance with the results obtained with the one-dimensional

density fluctuation model , we anticipate that , in the case of very

accurate measurements , a low—frequenc y approximation to the spectral—

density matrix will suffice. The low—frequenc y form of (6) is:

0 0 —2jçi

/ 0 2 0 —6 0

( 
-: 

—6 : 24 
-: (7)

~c(2z1
) 

\ 

-

0 —6 0 24

Hence , for several layers , the low—frequenc y optical—density matrices

for g , r’~ and for g ,  g ,  r are , respectivly:

2k
3 

—6k
4 —k

1
s
2 

k
2
s —2k3

s

(_6k4 
24k
5) 

and 

( 

—k
2
s 2k

3 
—6k

4 ) (8)

+~~ C
3

S 6k
4 

24k
5

where k~ = l/~ z [p/(2z.)~] and s denotes jU).

Example ( 1) : Est imation of g from rxy (or of g f rom

~ ~y 
= 4r( s) (rxy + n)

if
= Ry~~~~ y

—23—
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Then , according to Eq. (1.16) and Eq, (8):

= 

~~~~~ 

s~~~ 2k 3s2 
+ q’~)*(s) + ip(-s)(2k 3s)

+ (—2k 3s)ip(s) + 2k3~
ds

- j
~
.j. 

~ 

[2k3[l 
÷ sip(-s] [l—s4,(s)] + P~9r(~ s)*(s)~ ds

which is minimized by choosing 4r(s) so that

1— s4r (s)-~~O as s-~~~

(p — 2k
3
s2)ip(s) has no L.H P poles.

Hence 4r ( s )  = l/ts+(i/L)], a “first—order integrator” with “integration

length” L = ./2k3/p

The mean—squared estimation error is

= j
~
j- ~~~ 2k~[1 — s4r(s)]ds = ~/2k3

cp

This result is entirely similar to that obtained earlier with the

one—dimensional density fluctuation model

If we suppose again that independent measurements of (or r
~~
)

with an accuracy of 1 E~tvos are obtained every 10 sec at a velocity

of 50 m/sec, i.e., every 0.5 km , then p = 0 .5 x io l8 
km/sec

4
. If

the a l t i tude  z is zro , we f ind , with the aid of Table 1,

= ~~~.. = 6.4 X 10 6
g, not too d ifferent  from the ~~.. obtained

in Chap I. The integration length 1. .7900 km which may again be excessive

for some applications’ The fluctuations themselves have rms values:

—2 4—
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0
g = /2 0g = 

~J ~~~ 4 
= 4 .6 x 10

5g
z y

(The three shallowest layers of the Heller model give a somewhat

lower value than assumed earlier .)

Example 2: Estimation of g from r and r (‘jr of g from r andy xy— yz z xz
P .)zz

If = l1r,(s)(P~~ 
+ n1
) + 4r2(s)(ry, 4-n 2)

i~~ C /—2k 3s2+~ 6k
4s\/4r1

(s~~
= 

._J_... 
~ ~ f*~

(—s) , P2
(s))( )

~~~‘°° L \ 
—6k 4

S 24k5+PJ\*r2(s)/

f2k3s\ f~~l~
5
~\ 

I

i

+ (ip1(~ s) ,ip2 (— s) ]~~ ) + (—2k 3s , 6k4 )~~~~~~~~) +  2Ij ~ds

= 

~~~~~~ ~~j :  

~ 2k 3E 1+s~ i
(_s~~[1_s*i

(O~ + m~ip1(-s)ip1(s)

- 
+ 6k4ip2

(-s) (1 - sip~(s)]

+ 6k
4[1+s4r1(—s)]4

r
2

(s) + (24k
5
+p )4r

2
(—s)*r

2
(s)~ ds

This is minimized by choosing 
~~~~~ 

ip
2

(s) so that

l — sip1(s) ..O as s- ,~~

-~ 0 as s ~

(_2k
3
s2+pn 

6k
4
s \ fip1(s)\

1 1 1 J has no LHP poles .

\ —6k 4s 24k5+q,~/ \iv2(s)J

—25—
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The asymptotic result for small is:

= 1 ‘ *2 (e) = 
—

~

where ). = k4/4k5L, and where the integration length L is now:

L ~~~~~~~~~~~~~~~~ 

3k~

~n \ 4k 3k5

The resulting mean—squared estimation error is:

= 

~~~~ : [2k 3[l — s4r~ (s)]  + 6k4’4r2
(s)]Ids

2k / / 3k
2 

\
‘

= —j~ 
— 6Ak~ = V2k3Pn~~ 

— 4 k k )

In our numerical example , the additional information provided by

the additional measurement is not substantial; a— is reduced by 7~
percent, and I. by l5 percent. 

y

Example 3: Estimation of g from p
x xx

If = 4i’(s)(P 4- n)

= i~T ~:: ~ 
_S
~~
ki
S
4
+Pn~~~

S + k1s3ip (s)—~r(— s)k 1s
3—k 1s2)ds

= 

~~~ L: [(— k 1
s2) [ l +sip (— s )] [ l — s i p ( s) J  + cp~i1,(—s) *r (s))ds ,

which is minimized by choosing 4r (s) so that

—26—
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s[l — sp (s)J ~ 0 as s ~

(k
1
s4 

+ 
~~~~~~ 

has no 12W poles -

Hence, 2
S 4

4c(s) 2 2s 2
S

a “second—order integrator ” with integration length 1. = (4k1/~~)~~
’
~ .

The mean—squared estimation error is

= j~
j. ~~ (—k 1s)[1—s4(s)]ds = = (4k1rp~)~~

’
~

This , again , is similar to the result obtained with the one—dimen-

sional gravity fluctuation model .

In our numerical example , a~ = L x lO 6g and L = 2500 km.

Example 4: Estimation of g f rom r and rx x x —  xz

If = 4r1
( s)(r  + n1

) +

j
~,I /~ l~~~~ n ~

I(
2s

~ \ f 4 r 1(s)

= 
~ ~~~~~~~~~~~~~~~~ 3 - 2X 1.. \ k2

s —2k3
s 
~~n’ 

\ *2(s)

f_k 1s3\ f~~1
( s)\ 

~
)

+ 

~~~~~~~~~~~~~~~ 2 
j + ( k 1s , 

_k
2s)( J_ k i

s’?ds

\—k2
s 

/ 

~~~~~~~~ J
(cont’d next page)
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= 

~~~ ~~~:: ~~ .k 1s2
l+s ~~ )] {‘~ s*(~~)] +

— k
2
s~~2

(_S )[1_s9r
1
(s)] — k

2
S [l+S*1

(_S)]*
2
(S)

+ 4r2
(—s)(—2k

3
s2 + Pn

)
~P2
(5
~~

ds

which is minimized by choosing 4r1
(s), 

~~~~~ 
so that

s[l — s*1
(s)] -+ 0 as S -,

-~ 0 as S -+

(ki
S4+Pn —k2

s
3 ) (*l(s ’s~ 

has no 12W poles
\ k~s3 _2k

3
S2+Pn ~,2

(s)/

The asymptotic solution, for small r p, is:

2

4r2
(s) =

2 2s 2 2 2s 2
S + j— + j  S + + j ~

L L L

where k2 r4k / k2 \1 1/4
~ =j~

—
~ 

and L ~~~~~~~~ — 

2k
1k3)J

The mean—squared estimation error is

= 
j~~

j- ~~ C—k1
s2{l—s*1

(s) — k
2
s
2
*2(s))ds

4k
l 
(1 ~ [4klP~ (l 2k~k3)J 

1/4
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Again the improvement due to the additional information , in this

case r , is minor . In our numerical example L is reduced by 10 per-

cent and a by only 5 percent .

A similar ana lysis applies to the inclusion of a 3rd measurement ,
in the estimation of g .  The improvement turns  out to be equal ly

minor -

However , the inclusion of the measurement r , in the estimation

of g from P does not lead to a simple “slow ” fi l t e r . The results
from the one-dimensional density f luc tua t ion model suggest that there
ma y be a substantial  improvement over the f i r s t  order integration of

F although this may have been related to the identity r = — g

which applies only to the one-dimensional fluctuation model.

C. RATIONAL APPROXIMATIONS AND OPTIMISII FILTERING

The calculation of the optimal (Wiener) filter without the low—

frequency approximation (8) is possible onl y a f te r  the Bessel functions

K1(c~) in (6) have been approximated by rational functions . The simplest

approximation for K1(c~) which wi l l  serve our purpose is

1 
2 13

~I 1 +
~~~~

-

L b
2

The function K
1
(Q) and its approximant one shown in Fig. 1, for the

values b = 8/3 which preserves the correct value for S0 fl5K1(fl)d~)

and hence for
xx

The direct evaluation of the optimum filter will be laborious ,

especially in the case of more than one measurement . An alternative

but equivalent~ approach is described in the next section .
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D. FINITE STATE MOOEL

We will discuss how to construct a model in which the components

of and of the gravity-gradient tensor r form part of a finite

state which obeys a linear evolution in response to a finite white—noise

input . The optimal estimates and their accuracy will then be obtainable

from the steady—state solution of a standard matrix—Riccati equation.

For each layer (i = 1, 2, 3) we bu ild a model for g and 
~yz 

as follows:

w h 
_ _ _ _ _ _ _ _1 

~ 
“yz

2 
{h 31 

I .

FIGURE 11-2 -

P = h (S)W
yz I I -

g /2z1 = h
2

(S )W
1 + h

3
(S)W

2

where S denotes jfl, and W
1, 

W
2 

are independent white-noise inputs

with spectral density w~/fl(2z1
)~ . The transfer functions h

1
(S)

must lead to the rational approximation , obtained w ith (9) , to the

spectral—density matrix:
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r :  d~[K ’1’ ‘ ‘(~~)-K~ ’ ( & ~)] i
~
4

(K 1’ ‘(a)  -

,çz~ K’~ ’(~l) —iç(~i)] ~3iK’’t cz —K (nfl

This leads to:

P (-s)
(a) h s) =

- ‘  
L 

/ s

where p
3(s) is a cer tain cubic with LHP zeros ;

(i - !)-p (s2 )
b h ( s) =

2 

(1 +

where P
2 

is a certain quadratic polynomial;

P (÷ S)

- 
(c) h3

( s )  = :~(l÷~~)P3
s

where P4 is a certain quartic .

The model for g ,  g ,  P is more elaborate, as shown in Fig.

11—3.
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FIGURE 11-3

r = h
4(S)W4

= h5(S)W4 + hR(S)W5

= h7(S)W4 ÷ h8(S)W5 + h
9
(S)W~

where again W
4, 

W5., W6 
are independent white-noise inputs with spectral-

density cpi/Tt(2zi
)5, and the transfer-functions h~ (S)(J = 4 — 9) lead

to the rational approximation, obtained with (2.9), to the spectral-
density matrix :

~l
4
K~It (~2) .i~2

4
K~ ’(~l)

~z/25i:( ~
4
K~ ’’(~2) c23K~ t (~l) J~

3K1(~
) ).

g /2z
1: \_.u~

4
K’ ‘(s2) -.1~

3
K~(~ ) ~l

3K
1
(Q) /
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This leads to:

*P ( - s)
(a) h4(S) = 

/ S\7

where p~(s) is a certain quaxtic w ith LHP zeros ;

p~ (s2 ) (I  -

(b) he
(s)

(I + .~) p (s)

where P~ is a certain cubic;

P
6 

(—S )
(c) h

6
(S) = -

(I + ~) p (s)

where p (S) is a certain sextic with LHP zeros;

S P (s
2
)(l - 

S)
2

(d) h
7(S) = 5

(1 + .
~) p~(s)

where P~ is a certain quadratic ;

S P
5

(s2)(l -

(e) h8(S) = 4
(i. + -~) p (s)p 6(s)

where P5 is a certain quintic ;

s p
10(÷ s)

(f) h (s) = 3
*

(I +~~~)P4(s)P6
(s

where P10 is a certain 10-th degree polynomial.
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The total effect of all three layers (i = 1, 2, 3) is obtained

by adding in parallel three appropriate versions of Figures 11—2 or 11-3.

It is planned to carry through this finite-state approximation

and the resulting optimal filters, in order to obtain an (approximate)

check on the range of validity of the asymptotic filters obtained for

high measurement accuracy. It is hoped also to investigate the asymp-

totic form, if any, of the estimate of g when F and r are bothz xx zx
measured, and to see if the improvemen t obt a ined w ith r in the casexx
of a one—dimensional density fluctuation model carries over to the more

realistic model.
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Append ix 1

CRANDRASEKHAR ALGOR ITHM

According to Kailath ~Ref . 1], the Chandrasekhar t ype algorithm is

described as fo llows.

Suppose we have a process with a known state-space model of the

form

= Hx
i

+ V .

i � O
x. = Fx . +GU .i+l 1 i

where

EU U ’ = Qb , EV .V~ = Ro.
i i .  ii 1 3

EU~V’ =- 0

Ex 0x~ = EU .x~ a 0 a EV .X~

Assume that (F , G, H, Q, R) are constant matrices with dimensions

n x n , n X m , p X n , m x in , p X p.

Let

D = FIIQF’ + GQG’ — Fh1
0H’ (R4.H1t011’ )1H1T

0
F’ — 11

~ 
-

and assume that we can represent it (nonuniquely) as

D = L0
M0L~

where L0 and M0 are n x a and a x a matrices , a = rank D , and

M0 = diag (1, 1, . . . , 1, —1 , —1 , - . - ,

with as many i- l’s as U has ± eigenvalues . Then the quantities

[K i, R~) appearing in the estimator formu la
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= F~~~~_1 + K
1
(R~)~~~(y~ - 

~~1Ii -l~

can be computed v ia the equations

= R~ - HL1 (R~Y
’L;H’

= R~ 
- 1411’ (R~Y

1HLi

- K u = K~ — FL
i
(R
~
)
~~

Lj11t

L
i 1  = F L —  K1(R ~ )

1
HL1

where the initial values are

= R ÷ RIIO
Ht , K0 = FII

0H’, R~ = -M0
1
.

The number of computations required to go from index i to index

i+l can be seen to be c9(n
2
(p+a)) as compared to 9(n3) if the

Ricca ti equation is used . For special initial conditions, matrices

D, L0, and M0 are given as follows:

( a )  = 0 (pertect a priori knowledge of the states);

D =  GQG’, L0 = G Q ~ , and M0 = I .

(b) It~ = [I (stationary process)

- F1tF’ + GQG’ =

D = - 1I1’(R + H1IH ’ ) 1Hil

= flhI ’(R + Hflhl~ ) T
~
/2

M0 = - I .

j  

If the error covariance matrix P~~1 
is desired, it may be corn-

puted as 
-

~
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Pi+l 
It
o 

- £ LK(R~) 1L~ . 
-
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